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Diagnosis of thyroid cancer using deep convolutional neural 
network models applied to sonographic images: 
a retrospective, multicohort, diagnostic study
Xiangchun Li*†, Sheng Zhang*†, Qiang Zhang*, Xi Wei*, Yi Pan, Jing Zhao, Xiaojie Xin, Chunxin Qin, Xiaoqing Wang, Jianxin Li, Fan Yang, 
Yanhui Zhao, Meng Yang, Qinghua Wang, Zhiming Zheng, Xiangqian Zheng, Xiangming Yang, Christopher T Whitlow, Metin Nafi Gurcan, 
Lun Zhang, Xudong Wang, Boris C Pasche, Ming Gao, Wei Zhang†, Kexin Chen†

Summary
Background The incidence of thyroid cancer is rising steadily because of overdiagnosis and overtreatment conferred 
by widespread use of sensitive imaging techniques for screening. This overall incidence growth is especially driven by 
increased diagnosis of indolent and well-differentiated papillary subtype and early-stage thyroid cancer, whereas the 
incidence of advanced-stage thyroid cancer has increased marginally. Thyroid ultrasound is frequently used to 
diagnose thyroid cancer. The aim of this study was to use deep convolutional neural network (DCNN) models to 
improve the diagnostic accuracy of thyroid cancer by analysing sonographic imaging data from clinical ultrasounds.

Methods We did a retrospective, multicohort, diagnostic study using ultrasound images sets from three hospitals in 
China. We developed and trained the DCNN model on the training set, 131 731 ultrasound images from 17 627 patients 
with thyroid cancer and 180 668 images from 25 325 controls from the thyroid imaging database at Tianjin Cancer 
Hospital. Clinical diagnosis of the training set was made by 16 radiologists from Tianjin Cancer Hospital. Images 
from anatomical sites that were judged as not having cancer were excluded from the training set and only individuals 
with suspected thyroid cancer underwent pathological examination to confirm diagnosis. The model’s diagnostic 
performance was validated in an internal validation set from Tianjin Cancer Hospital (8606 images from 1118 patients) 
and two external datasets in China (the Integrated Traditional Chinese and Western Medicine Hospital, Jilin, 
741 images from 154 patients; and the Weihai Municipal Hospital, Shandong, 11 039 images from 1420 patients). 
All individuals with suspected thyroid cancer after clinical examination in the validation sets had pathological 
examination. We also compared the specificity and sensitivity of the DCNN model with the performance of six skilled 
thyroid ultrasound radiologists on the three validation sets.

Findings Between Jan 1, 2012, and March 28, 2018, ultrasound images for the four study cohorts were obtained. The 
model achieved high performance in identifying thyroid cancer patients in the validation sets tested, with area under 
the curve values of 0·947 (95% CI 0·935–0·959) for the Tianjin internal validation set, 0·912 (95% CI 0·865–0·958) for 
the Jilin external validation set, and 0·908 (95% CI 0·891–0·925) for the Weihai external validation set. The DCNN 
model also showed improved performance in identifying thyroid cancer patients versus skilled radiologists. For the 
Tianjin internal validation set, sensitivity was 93·4% (95% CI 89·6–96·1) versus 96·9% (93·9–98·6; p=0·003) and 
specificity was 86·1% (81·1–90·2) versus 59·4% (53·0–65·6; p<0·0001). For the Jilin external validation set, sensitivity 
was 84·3% (95% CI 73·6–91·9) versus 92·9% (84·1–97·6; p=0·048) and specificity was 86·9% (95% CI 77·8–93·3) 
versus 57·1% (45·9–67·9; p<0·0001). For the Weihai external validation set, sensitivity was 84·7% (95% CI 77·0–90·7) 
versus 89·0% (81·9–94·0; p=0·25) and specificity was 87·8% (95% CI 81·6–92·5) versus 68·6% (60·7–75·8; p<0·0001).

Interpretation The DCNN model showed similar sensitivity and improved specificity in identifying patients with 
thyroid cancer compared with a group of skilled radiologists. The improved technical performance of the DCNN 
model warrants further investigation as part of randomised clinical trials.

Funding The Program for Changjiang Scholars and Innovative Research Team in University in China, and National 
Natural Science Foundation of China.
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Introduction
The incidence of thyroid cancer has been increasing 
worldwide over the past two decades, including in the 
USA, where a decrease in the incidence of many other 
cancer types has been reported.1 Thyroid cancer is 
three times more prevalent in women than in men1 and is 

the most frequently diagnosed type of cancer in women 
younger than 30 years of age in China.2 Patients who are 
suspected of thyroid disease undergo ultrasound imaging, 
the results of which are interpreted by a radiologist for 
clinical diagnosis. A key aspect of a radiologist’s inter­
pretation of thyroid cancer is recognition of the malignant 
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thyroid nodule, according to the Thyroid Imaging, 
Reporting and Data System (TI-RADS) guidelines. The 
American College of Radiology (ACR) TI-RADS,3 European 
TI-RADS,4 and American Thyroid Association guidelines5 
propose multiple criteria to interpret sonographic images. 
Among these criteria, solid aspect, hypoechogenicity, 
taller-than-wide shape, irregular margin, extrathyroidal 
extension, calcification, and punctate echogenic foci are 
clinically relevant features associated with suspicion of 
malignant disease.3–8 Patients with suspected thyroid 
cancer undergo fine-needle aspiration biopsy or surgical 
resection, which is assessed by pathological examination 
(the gold standard for diagnosis). Therefore, diagnosis of 
thyroid cancer is a time-consuming and often subjective 
process requiring substantial experience and expertise of 
radiologists.

There are four main subtypes of thyroid cancer: 
papillary, follicular, medullary, and anaplastic.7 The 5-year 
relative survival of patients with thyroid cancer is 99·7%,1 
but this value varies substantially for different subtypes 
when stratified by stages: near 100% for stage I and II 
papillary, follicular, and medullary carcinoma; 71% for 
stage III follicular carcinoma, 81% for stage III medullary 
carcinoma, and 93% for stage III papillary carcinoma; 
and 7% for anaplastic, 28% for medullary, 50% for 
follicular, and 51% for papillary carcinoma at stage IV.9 
All anaplastic thyroid cancers are considered stage IV.9 In 
view of the good prognostic outcome of early-stage 
thyroid cancer, analysis of thyroid ultrasound imaging 
data by an artificial intelligence algorithm with high 
performance could help differentiate patients at different 
risk and avoid unnecessary fine-needle aspiration biopsy 
or thyroidectomy for those at lower risk, particularly for 
those patients with papillary carcinomas.

The widespread use of sensitive imaging methods for 
screening has led to a steady increase in incidence of 
thyroid cancer, causing overdiagnosis and overtreatment 
in this setting.10,11 Indolent and well-differentiated 
papillary carcinomas and other early-stage thyroid cancers 
are the main reasons for the growth in incidence, since 
the incidence of advanced-stage thyroid cancer is rising 
only marginally. Mortality from thyroid cancer has 
decreased slightly during the past decade.10 The frequency 
of estimated age-standardised thyroidectomy has risen 
annually by threefold to fourfold in both sexes over the 
same period.10 Therefore, development of an artificial 
intelligence framework based on a precise algorithm with 
high sensitivity and specificity could maintain a high 
recall rate for patients with thyroid cancer and identify 
individuals at low risk for developing advanced disease, 
thus avoiding unnecessary fine-needle aspiration biopsy. 
Recently, deep convolutional neural network (DCNN) 
models have been shown to achieve dermatologist-level 
classification accuracy in skin cancer diagnosis.12 Deep 
learning models have also shown improved performance 
compared with human experts in detection of diabetic 
retinopathy and eye-related diseases from raw input 
pixels of retinal fundus photographs.13–15

A traditional machine-learning algorithm for diagnosis 
of thyroid cancer has been previously developed,16 but it 
used as inputs features that were identified explicitly by 
human experts. Unlike traditional machine learning, 
deep learning does not require engineered features 
designed by human experts. Rather, deep learning takes 
raw image pixels and corresponding class labels from 
medical imaging data as inputs and automatically learns 
feature representation with a general manner.17 Learned 
representations can be used for classification and object 

Biomedical Informatics 
Department of Internal 

Medicine (Prof M N Gurcan PhD), 
and Wake Forest Baptist 

Comprehensive Cancer Center, 
Wake Forest Baptist Medical 

Center, Department of Cancer 
Biology (Prof B C Pasche MD, 

Prof W Zhang PhD), Wake Forest 
School of Medicine, 

Winston-Salem, NC, USA

Correspondence to: 
Prof Kexin Chen, Department of 
Epidemiology and Biostatistics, 

Tianjin Medical University Cancer 
Institute and Hospital, 
Tianjin 300060, China 

chenkexin@tjmuch.com

Research in context

Evidence before this study
We searched PubMed on Aug 26, 2018, for research articles that 
contained the terms “deep learning” OR “convolutional neural 
network” AND “large scale thyroid imaging data”, without date 
or language restrictions. We found no studies that examined 
the use of deep learning to improve diagnostic accuracy of 
thyroid cancer by analysing large-scale sonographic imaging 
datasets. When we searched PubMed with the terms “deep 
learning” OR “convolutional neural network” AND “thyroid 
cancer”, we found seven studies that either used deep learning 
or conventional feature extraction-based machine-learning 
algorithms to characterise malignancy of thyroid nodules from 
ultrasonographic images. However, these studies did not 
include large training datasets (<100 000 images) or external 
validation sets. The best diagnostic classification method 
obtained so far was trained with 15 000 images and was not 
externally validated. Speculatively, the heterogeneity of thyroid 
nodules was not fully characterised with a limited dataset, 
and its generalisability remains unknown.

Added value of this study
The high performance of the deep learning model we 
developed in this study was validated in several cohorts. 
The improvement in accuracy and specificity seen with this 
model could lead to a reduction in unnecessary invasive 
fine-needle aspiration biopsy procedures and overdiagnosis 
and overtreatment of thyroid cancer. Furthermore, it has the 
potential to reduce barriers and provide equal access to 
diagnostic tools for thyroid cancer in regions and countries 
where medical resources are scarce.

Implications of all the available evidence
The results of our study could improve accuracy, efficiency, 
and reproducibility of thyroid cancer diagnosis. The artificial 
intelligence approach proposed could be particularly valuable 
in community hospitals in which expertise in radiological 
imaging interpretation is insufficient. Construction of a 
website running this deep learning framework is ongoing and 
will be freely available online.
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detection. In this study, we aimed to ascertain the 
capability of deep learning models for automated 
diagnosis of thyroid cancer using real-world sonographic 
data from clinical thyroid ultrasound examinations. 
We compared results with pathological examination 
reports (the diagnostic gold standard). This study 
encompassed model development with a cohort of more 
than 300 000 images, and validation of the model in three 
validation datasets.

Methods
Study design and participants
We did a retrospective, multicohort, diagnostic study 
using ultrasound images sets from three hospitals in 
China. We obtained ultrasound images for the training set 
(312 399 images from 42 952 patients) from the thyroid 
imaging database at Tianjin Cancer Hospital, Tianjin, 
China. We obtained images for validation sets from 
thyroid imaging databases at Tianjin Cancer Hospital 
(internal validation set, 8606 images from 1118 patients), 
the Integrated Traditional Chinese and Western Medicine 
Hospital, Jilin, China (Jilin external validation set, 
741 images from 154 patients), and Weihai Municipal 
Hospital, Shandong, China (Weihai external validation 
set, 11 039 images from 1420 patients).

We included adult patients aged 18 years or older. 
Clinical diagnosis of the training set was made by 
16 radiologists from Tianjin Cancer Hospital, according 
to TI-RADS guidelines.3–5 All patients with thyroid cancer 
and 5651 negative control individuals in the training set, 
and all individuals in the three validation sets, underwent 
pathological examination. Pathological examination 
reports were provided by the pathology department at 
Tianjin Cancer Hospital. All ultrasound images and 
pathological examination reports were deidentified 
before they were transferred to investigators.

This study was approved by the institutional review 
board (IRB) of Tianjin Cancer Hospital and undertaken 
according to the Declaration of Helsinki. Informed 
consent from patients with thyroid cancer and controls 
was exempted by the IRB because of the retrospective 
nature of this study.

Procedures
All thyroid ultrasound images extracted from the thyroid 
imaging database at all three hospital sites were in jpeg 
format. Ultrasound equipment manufactured by Philips, 
Toshiba, and GE Healthcare (various models) was used 
to generate ultrasound images.

Image quality control was performed for the training 
set; we removed images from thyroid cancer patients if 
the anatomical sites did not have cancer as per the 
pathological review report, according to the location sign 
on the image. For example, if the image available was 
from the left lobes of the thyroid but pathology data were 
for the isthmus of the thyroid, the image was considered 
not suitable for training. For the validation sets, all 

images were included. Sonographic images with lymph 
nodes were also included in both training and validation 
sets.

A DCNN classification model, in which image input 
features (eg, image pixels) are mapped to the corres­
ponding output label (eg, benignity or malignancy), was 
used to train the deep learning algorithm. The DCNN 
algorithm can learn hierarchical representations from 
the input imaging data. Such a trained model can make 
predictions on input data. We used the ResNet model18 
with 50 layers (ResNet-50) and the Darknet model19 with 
19 layers (Darknet-19) for image classification. Layers are 
functional units of neural network and can have different 
functions in that they learn and store abstract features of 
the input image. The ResNet-50 and Darknet-19 models 
were first trained iteratively for classification of patients 
with thyroid cancer (using 131 731 images) and controls 
(using 180 668 images). We next combined these two deep 
learning models by weighting their performance 
(measured by area under the curve [AUC]) and assessed 
the ensemble DCNN model with the internal and 
external validation sets.

Darknet-19 was proposed as the backbone for the object 
detection algorithm19 because it is more computationally 
efficient than ResNet-50 (in that Darknet-19 has fewer 
arithmetic operations compared with ResNet-50) and 
achieved performance metrics with ImageNet data19 that 
were comparable with those obtained with ResNet-50 
(appendix p 4). The weights of ResNet-50 and Darknet-19 
were initialised from the same network that had been 
trained to classify 1000 objects in the ImageNet dataset,20 
except the last layer. The weights of last layer were 

Training set* 
(n=42 952)

Tianjin internal 
validation set 
(n=1118)

Jilin external 
validation set 
(n=154)

Weihai external 
validation set 
(n=1420)

Inpatients with thyroid 
cancer

17 627 (41%) 563 (50%) 70 (45%) 542 (38%)

Images 131 731 4491 347 4818

Control inpatients 5651 (13%) 555 (50%) 84 (55%) 878 (62%)

Images 51 255 4115 394 6221

Control outpatients† 19 674 (46%) 0 0 0

Images 129 413 0 0 0

Male sex 10 832 (25%) 261 (23%) 34 (22%) 282 (20%)

Images 78 768 1785 154 1992

Female sex 32 032 (75%) 866 (77%) 120 (78%) 1138 (80%)

Images 233 268 6830 587 9047

Age (years) 44 (36–54) 47 (24–41) 51 (45–59) 50 (41–59)

Age ≤30 years male 2009 (5%) 112 (10%) 1 (<1%) 24 (2%)

Age >30 years male 8823 (21%) 146 (13%) 33 (21%) 258 (18%)

Age ≤30 years female 5830 (14%) 381 (34%) 5 (3%) 76 (5%)

Age >30 years female 26 202 (61%) 479 (43%) 115 (75%) 1062 (75%)

Data are n, n (%) or median (IQR). *No information on sex was available for 88 individuals in the training set 
(corresponding to 363 images). †These individuals did not have any malignant characteristics, decided by doctors at 
clinical examination.

Table 1: Baseline characteristics

See Online for appendix
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randomly initialised and the output unit was changed to 
two for matching the number of classes in our study 
(ie, thyroid cancer vs control). We trained the network 
with stochastic gradient descent running on an NVIDIA 
graphic processing unit (GPU) with a GTX 1080Ti 
graphics card (NVIDIA, Beijing, China). We also applied 

on-the-fly data augmentation12,21 for each image during 
training to avoid overfitting. On-the-fly augmentation 
generates more training images through image proces­
sing such as random cropping, rotation, horizontal or 
vertical flipping, scaling, translations, and adjustment of 
the saturation and exposure, which mimic the data 
diversity observed in the real world, avoiding model 
overfitting. Image augmentation was not done for the 
validation sets. Additionally, a weight decay rate of 0·0005 
was also set to additionally combat for overfitting. Weight 
decay can prevent the weights of neural network from 
growing too large.

To quantify the contribution of the pixels that most 
influence the DCNN model’s prediction, we generated a 
class activation map22 by using global average pooling in 
the ResNet model (appendix p 4).

To derive individual-level prediction scores, we denoted 
n as the total number of images available from that 
patient and let Pcancer=[P1, P2, . . . , Pn] denote the predicted 
probabilities for these n images that were classified as 
cancer. The score θ assigned to an individual was defined 
as the average value of log-transformed Pcancer.

The prediction scores obtained from ResNet-50 and 
Darknet-19 were combined, which is weighted by their 
performance—ie, the area under the receiver operating 
characteristic (ROC) curve (AUC) value of ResNet-50 
(AUCResNet-50) and AUC value of Darknet-19 (AUCDarknet-19).

Here, w1=AUCResNet-50 / (AUCResNet-50 + AUCDarknet-19) and 
w2=1·0 – w1

We compared the performance of the deep learning 
model predictions for thyroid cancer diagnosis with 
those of six skilled thyroid ultrasound radiologists (XiWe, 
XX, XiWa, FY, JZ, and SZ) with at least 6 years’ experience 
each. We asked the radiologists to read and interpret 
subsets of thyroid ultrasound imaging data randomly 
selected from validation sets. We made the random 
selections using the random sampling function 
implemented in R software (sample). The entire image 
subset for selected patients was shown to the radiologists, 
who interpreted the images according to the guidelines 
of ACR TI-RADS. Each radiologist read image subsets 
from two validation sets. The performance of the 
radiologists was assessed by comparing their predictions 
with pathological reports (which are the diagnostic gold 
standard).

Prediction scores derived from DCNN models were 
compared with pathological examination reports of 
formalin-fixed and paraffin-embedded samples of sus­
pected cancers removed surgically, which is the gold 
standard for diagnosis. Pathological examination was done 
to confirm diagnosis for all individuals in the training set 

For more on R see 
www.R-project.org

θ = – [In(1 – P1) + In(1 – P2) + ... + In(1 – Pn)] / n

θcombined = w1 × θResNet-50 + w2 × θDarknet-19

Figure 1: Flowchart of the procedures in the development and evaluation of deep learning models for 
automated thyroid cancer diagnosis
Controls were patients with thyroid diseases that were negative on pathological examination or that did not show 
any evidence associated with thyroid malignancy in clinical testing, as determined by doctors. DCNN=deep 
convolutional neural network.
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with thyroid nodules displaying malignant characteristics 
at clinical examination (17 627 [76%] of 23 278 individuals). 
The remaining 19 674 individuals were used as negative 
controls. All individuals in the three validation sets had 
pathological examination results. Pathological assessment 
was done by board-certified pathologists at individual sites 
according to WHO Classification of Tumors of Endocrine 
Organs. All pathological assessments were based on 
haematoxylin and eosin-stained whole-slide images.

Statistical analysis
For classification purposes, we used the ROC curve to 
show the diagnostic ability of the deep learning model in 
discriminating thyroid cancer patients from controls. The 
ROC curve was created by plotting the true positive rate 
(sensitivity) against the false positive rate (1 – sensitivity), 
by varying the predicted probability threshold, and we 
calculated AUC values. We calculated 95% CIs for 
sensitivity and specificity with the Clopper-Pearson 
method.23 Sensitivity was calculated as the fraction of 
patients with cancer who were correctly identified, and 
specificity was calculated as the fraction of patients 
without thyroid cancer who were correctly identified. 
We calculated AUC values, accuracy, sensitivity, and 
specificity using R software caret (version 6.0-78) and 
GenBinomApps (version 1.0-2). The ROC curve was plotted 
by R software pROC (version 1.10.0).

We also calculated likelihood ratios for positive and 
negative results. We calculated the likelihood ratio for 
positive results as sensitivity divided by 1 – specificity and 
the likelihood ratio for negative results as 1–sensitivity 
divided by specificity. The confusion matrix in our study 
is a 2 × 2 contingency table that reports the number of 
true positives, false positives, false negatives, and true 
negatives. We used the average accuracy, sensitivity, and 
specificity of the radiologists when comparing perfor­
mance between the deep learning model and the radiolo­
gists. The inter-radiologist agreement rate and Fleiss’ 
kappa value24 were calculated for each validation set using 
R software irr (version 0.84). We used the binomial test to 
statistically evaluate the difference in accuracy, sensitivity, 
and specificity between the deep learning model and 
the radiologists. Statistical analyses were done with 
R software (version 3.4.3).

Role of the funding source
The funder had no role in study design, data collection, 
data analysis, data interpretation, or writing of the report. 
The corresponding author had full access to all the data 
in the study and had final responsibility for the decision 
to submit for publication.

Results
Between Jan 1, 2012, and Dec 15, 2017, 396 998 ultrasound 
images were obtained for the training set from the 
Thyroid Imaging Database in Tianjin Cancer Hospital. 
After quality control evaluation, 84 599 (21%) images that 

did not match with pathological reports in terms of 
anatomical locations were removed from this set. The 
complete training set consisted of 312 399 images from 
42 952 individuals: 17 627 patients with thyroid cancer 
(131 731 images) and 25 325 controls (180 668 images).

Between Jan 1, 2018, and Mar 28, 2018, 8606 images 
from 1118 individuals for the internal validation set were 
obtained from Tianjin Cancer Hospital. Between 
Apr 1, 2016, and Feb 28, 2018, 741 images from 
154 individuals for the first external validation set were 
obtained from Integrated Traditional Chinese and Western 
Medicine Hospital (Jilin set). Between Jan 1, 2016, and 
Dec 29, 2017, 11 039 images from 1420 individuals for the 
second external validation set were obtained from Weihai 
Municipal Hospital (Weihai set). Baseline characteristics 
of the training set and three validation sets are shown in 
table 1. Clinicopathological information related to tumour 
subtype and tumour size are provided in the appendix (p 1).

A flowchart depicting processes during the study is 
shown in figure 1. The model achieved high performance 
in identifying thyroid cancer patients in the validation 
sets tested (table 2), with AUC values of 0·947 (95% CI 
0·935–0·959) for the Tianjin internal validation set, 
0·912 (0·865–0·958) for the Jilin external validation set, 
and 0·908 (0·891–0·925) for the Weihai external 
validation set (figure 2). Likelihood ratios for positive and 
negative diagnostic results were, respectively, 6·40 
(95% CI 5·27–7·96) and 0·09 (0·07–0·12) for the internal 
validation set, 6·43 (3·92–12·77) and 0·18 (0·09–0·29) 
for the Jilin set, and 6·74 (5·68–8·14) and 0·18 
(0·14–0·21) for the Weihai set. The appendix (p 1) shows 
exemplified class activation maps that identify the pixels 
on which the ResNet-50 model was fixating its attention 
for prediction. Confusion matrices reporting the number 
of true-positive, false-positive, false-negative, and true-
negative results for ResNet-50, Darknet-19, and the 
ensemble DCNN model are shown in the appendix (p 2).

500 (45%) of 1118 individuals from the Tianjin internal 
validation set (3734 [43%] of 8606 images), 274 (19%) of 
1420 individuals from the Weihai external validation 
set (2233 [16%] of 13 949 images), and all 154 (100%) 
individuals from the Jilin external validation set 
(all 741 images) were selected, and these images were 

Tianjin cohort (n=1118) Jilin cohort (n=154) Weihai cohort (n=1420)

Accuracy (95% CI) 0·889 (0·869–0·907) 0·857 (0·792–0·908) 0·863 (0·844–0·880)

Sensitivity (95% CI) 0·922 (0·897–0·943) 0·843 (0·736–0·919) 0·849 (0·816–0·878)

Specificity (95% CI) 0·856 (0·824–0·884) 0·869 (0·778–0·933) 0·871 (0·847–0·893)

Positive predictive value 0·866 0·843 0·803

Negative predictive value 0·915 0·869 0·903

Kappa* 0·778 0·712 0·712

F1† 0·893 0·843 0·825

DCNN=deep convolutional neural network. *Measures the agreement between the DCNN model prediction and the 
pathological report. †Measures the accuracy of the DCNN model prediction against the pathological report.

Table 2: Performance metrics for the ensemble DCNN model, assessed on the validation sets
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used to assess the performance of the ensemble DCNN 
model versus the group of six skilled thyroid ultrasound 
radiologists (table 3). Radiologist 1 read 4483 images 
(n=654 individuals), radiologist 2 read 5967 images 
(n=774), radiologist 3 read 3734 images (n=500), radiolo­
gist 4 read 2982 images (n=482), radiologist 5 read 
741 images (n=154), and radiologist 6 read 2233 images 
(n=274). The entire image set for every selected patient 
was shown to and read by the radiologists. Radiologists’ 
manual interpretation results were aggregated and the 
classification accuracy, sensitivity, and specificity were 
calculated and compared with that of deep learning 
models.

Among the radiologists, for the Tianjin internal 
validation set, accuracy ranged from 78·0% (95% CI 
74·1–81·6; 390 of 500 individuals) to 79·6% (75·8–83·0; 
398 of 500 individuals), sensitivity ranged from 94·1% 
(90·5–96·7; 241 of 256 individuals) to 98·4% (96·0–99·6; 
252 of 256 individuals), and specificity from 57·0% 
(50·5–63·3; 139 of 244 individuals) to 62·3% (55·9–68·4; 
152 of 244 individuals). For the Jilin external validation 
set, accuracy ranged from 70·8% (95% CI 62·9–77·8; 
109 of 154 individuals) to 74·7% (67·0–81·3; 115 of 
154 individuals), sensitivity from 85·7% (75·3–92·9; 
60 of 70 individuals) to 97·1% (90·1–99·7; 68 of 
70 individuals), and specificity from 51·2% (40·0–62·3; 
43 of 84 individuals) to 63·1% (51·9–73·4; 53 of 
84 individuals). For the Weihai external validation 
set, accuracy ranged from 72·6% (66·9–77·8; 199 of 
274 individuals) to 81·8% (76·7–86·1; 223 of 274 indivi­
duals), sensitivity from 85·6% (77·9–91·4; 101 of 
118 individuals) to 94·1% (88·2–97·6; 111 of 118 indivi­
duals), and specificity from 62·2% (54·1–69·8; 97 of 
156 individuals) to 78·8% (71·6–85·0; 123 of 156 indivi­
duals). The inter-radiologist agreement rate was 86·4% 
(95% CI 83·1–89·3; 432 of 500 individuals; Fleiss’ Kappa 
0·79) in the Tianjin internal validation set, 76·6% 
(69·1–83·1; 118 of 154 individuals; Fleiss’ Kappa 0·65) in 
the Jilin external validation set, and 69·7% (63·9–75·1; 

191 of 274 individuals; Fleiss’ Kappa 0·59) in the Weihai 
external validation set.

Compared with the skilled radiologists, the ensemble 
DCNN model achieved high performance in identifying 
thyroid cancer patients. For the Tianjin internal validation 
set, accuracy was 89·8% (95% CI 86·8–92·3; 994 of 
1118 individuals) with the DCNN model versus 78·8% 
(75·0–82·3; 394 of 500 individuals; p<0·0001) with the 
radiologists, sensitivity was 93·4% (95% CI 89·6–96·1; 
519 of 563 individuals) versus 96·9% (93·9–98·6; 248 of 
256 individuals; p=0·003), and specificity was 86·1% 
(95% CI 81·1–90·2; 475 of 555 individuals) versus 59·4% 
(53·0–65·6; 145 of 244 individuals; p<0·0001). For the 
Jilin external validation set, accuracy was 85·7% (95% CI 
79·2–90·8; 132 of 154 individuals) versus 72·7% 
(65·0–79·6%; 112 of 154 individuals; p<0·0001), sensitivity 
was 84·3% (95% CI 73·6–91·9%; 59 of 70 individuals) 
versus 92·9% (84·1–97·6; 65 of 70 individuals; p=0·048), 
and specificity was 86·9% (95% CI 77·8–93·3; 73 of 
84 individuals) versus 57·1% (45·9–67·9%; 48 of 
84 individuals; p<0·0001). For the Weihai external 
validation set, accuracy was 86·5% (95% CI 81·9–90·3; 
1225 of 1420 individuals) versus 77·4% (72·0–82·2; 212 of 
274 individuals; p<0·0001), sensitivity was 84·7% (95% CI 
77·0–90·7; 460 of 542 individuals) versus 89·0% 
(81·9–94·0%; 105 of 118 individuals; p=0·25), and 
specificity was 87·8% (95% CI 81·6–92·5; 765 of 
878 individuals) versus 68·6% (60·7–75·8; 107 of 
156 individuals; p<0·0001). At the same specificity as the 
group of radiologists, the ensemble DCNN model had 
higher or at least comparable sensitivity and specificity 
across these three validation sets (figure 2, table 3). 
Additionally, the ensemble DCNN model had higher 
kappa coefficient, positive predictive value, and F₁ score 
compared with the performance of the radiologists 
(table 3). Classification confusion matrices reporting the 
number of true-positive, false-positive, false-negative, and 
true-negative results achieved by the group of skilled 
ultrasound radiologists, the ResNet-50 model, the 

Figure 2: Performance of the ensemble DCNN model in identifying patients with thyroid cancer on three validation sets
The blue dots on each ROC curve indicate the performance of the radiologists. AUC=area under the curve. DCNN=deep convolutional neural network. ROC=receiver 
operating characteristics curve.
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Darknet-19 model, and the ensemble DCNN model are 
provided in the appendix (pp 3, 4).

Discussion
The findings of our retrospective study show that our 
DCNN model tested in three validation sets can achieve 
high accuracy, sensitivity, and specificity in automated 
thyroid cancer diagnosis in a real-world setting. The 
developed artificial intelligence system had significantly 
higher accuracy and specificity in classifying thyroid 
cancer patients compared with a group of skilled 
radiologists. The thyroid ultrasound images used in our 
study were produced by several different types of 
ultrasound equipment, which contributed to increased 
data diversity to train the algorithm and test interpretation 
subjectivity from radiologists.

Thyroid cancer diagnosis requires accurate recognition 
of malignant thyroid nodules. However, thyroid nodules 
are characterised by heterogeneous appearances and 
vague boundaries, leading to difficulties in accurate 
recognition and consistent interpretation of malignant 
nodules by radiologists, as shown by varying agreement 
rates between radiologists in the validation sets. Deep 
learning has advantages in overcoming the problem of 
heterogeneity, because feature representation learned 
from thyroid ultrasound images is not limited by 
engineered features used by radiologists. Instead, the 
DCNN model learned feature representations with an 
automated procedure. Interpretation of thyroid cancer by 
deep learning maintains consistency and, therefore, 
diagnostic reproducibility. Another benefit offered by our 
artificial intelligence system is that it could report results 
instantly on a graphical processing unit, and integration 
of the system into ultrasound equipment could help 
radiologists accelerate the interpretation process. 
Integration of this system into a portable ultrasound 
machine could enable flexible monitoring of disease 
development and progression and, thus, augment the 
capability of radiologists to manage individuals who are at 
high risk of thyroid cancer. Conferred by the high speed 
of a GPU, the developed DCNN model has the advantage 
to assess all images of a lesion, whereas a radiologist 
sometimes cannot do so because ultrasound image 
interpretation is labour-intensive. Implementation of the 
DCNN model could lead to a reduction in overdiagnosis 
and overtreatment related to thyroid cancer. However, the 
applicability of this proposed integration system needs to 
be tested in prospective clinical studies.

To the best of our knowledge, our study included the 
largest number of images so far for development and 
validation of a deep learning model. All patients in the 
validation sets underwent thyroid surgery and patho­
logical examination, whereas some controls in the 
training set did not have surgery or a pathology report. 
The performance of the deep learning model is 
presumably lower in the validation sets because they 
were enriched for nodules with more typical features of 
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malignancy and, thus, were more difficult to differentiate. 
The improvement in accuracy and specificity reported 
with the DCNN model might lead to a reduction in 
unnecessary fine-needle aspiration biopsy procedures. 
However, clinical diagnostic validity needs to be assessed 
in future randomised clinical trials against current 
standard procedures.

The trained DCNN model could correctly pinpoint 
malignant thyroid nodules in a weakly supervised 
manner through class activation map analysis. DCNN 
models and machine learning approaches based on 
conventional feature extraction have previously been 
investigated for discrimination of malignancy of thyroid 
nodules from ultrasound images. For example, Ma and 
colleagues25 used DCNN and analysed 8148 manually 
annotated thyroid nodules and obtained an accuracy of 
83·0% (95% CI 82·3–83·7) in thyroid nodule diagnosis; 
however, data from this study are not available so we 
could not assess them with our artificial intelligence 
system. Xia and colleagues26 achieved an accuracy of 
87·7% in differentiating malignant and benign nodules 
by applying extreme machine learning to radiologist-
collected features that were obtained from 203 ultrasound 
images of 187 patients with thyroid cancer. Pereira and 
colleagues27 reported an accuracy of 83% achieved by a 
DCNN model in distinguishing between malignant and 
benign thyroid nodules from 946 images of 165 patients, 
which was substantially higher than machine learning 
algorithms based on conventional feature extraction. 
However, these studies were limited by small sample 
sizes and no external validation sets. We do not know if 
the improvement in accuracy we reported in our study 
relates to the machine learning method used or to the 
much larger training dataset.

Our study has some limitations. We did not include 
training data from other hospitals, and we did not do 
sensitivity analyses with respect to tumour size and 
subtypes of malignant disease. 5651 (13%) of 42 952 indivi­
duals in the training set were true negatives, with the 
assumption that patients who did not undergo surgery 
would be mainly negative diagnoses. The performance of 
our artificial intelligence system is expected to increase by 
including more data and expanding the sets to real-world 
data from other hospitals. Other limitations were that a 
TI-RADS score of 5 was the only condition to score 
nodules as malignant, and that in contrast to the 
algorithm, radiologists in our study did not analyse lymph 
node images to support their diagnosis. In daily practice, a 
radiologist reviews approximately 300 images (from about 
30 individuals) under time constraints. In our study, 
radiologists were asked to review images without time 
constraints; thus, the specificity of this group of skilled 
radiologists is expected to decrease in daily practice. The 
features of benign nodules or normal thyroid are less 
heterogeneous than are those of malignant nodules. 
Although thyroid cancer subtypes with low incidence—
such as follicular thyroid cancer—were not well 

represented in our training set, the hierarchical features 
learned from papillary carcinoma should be generalisable 
to other subtypes since features of thyroid nodules from 
images of papillary carcinoma are shared with those from 
follicular carcinoma. Because the algorithm was trained 
only with images from anatomical sites that did have 
cancer, and the probability of cancer was calculated by 
averaging logarithmic transformation of one minus 
probabilities from each image, the algorithm could report 
a lower score in a clinical trial, when non-cancer site 
images would not be removed, leading to decreased 
sensitivity.

Factors that limit generalisability of the DCNN model 
relate mainly to an absence of multicentre training 
cohorts and removal of images from anatomical sites of 
cancer patients who have no tumours. Additionally, most 
patients in the cohorts are northern Han Chinese. Future 
multicentre investigations should mitigate this limiting 
factor and improve generalisability. The current artificial 
intelligence system was not able to account for other 
clinical parameters; therefore, it cannot replace manual 
diagnosis of thyroid cancer but could augment the ability 
of thyroid ultrasound radiologists in thyroid cancer 
diagnosis.

We are building a website to provide free access to the 
developed DCNN model. In our future work, we intend 
to link hierarchical features of thyroid ultrasound images 
learned by DCNN models to features of thyroid nodules 
that are mostly used by radiologists in interpreting 
thyroid cancer. Medical resources in urban and rural 
areas of China—and in many other countries in the 
world—are unbalanced; the artificial intelligence system 
developed in our study could contribute to reducing 
barriers and providing a convenient way for community 
hospitals to improve thyroid cancer diagnosis.

The newly developed DCNN model showed improved 
accuracy, sensitivity, and specificity in identifying patients 
with thyroid cancer at levels similar to or higher than a 
group of skilled radiologists. The improved technical 
performance obtained by the DCNN model indicates that 
this method is valuable to proceed with and to be tested in 
prospective clinical trials.
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